256 research outputs found

    A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort

    Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have provided evidence for a link between leptin and tumor necrosis factor-alpha (TNF-α). Insulin-like growth factor I (IGF-I) mediates the metabolic effects of growth hormone (GH). The GH axis is believed to be suppressed in chronic obstructive pulmonary disease (COPD). The aim of this study is to find out whether acute exacerbations of COPD are followed by changes in plasma leptin and insulin-like growth factor I (IGF-I) levels and furthermore, whether these changes are related to systemic inflammation.</p> <p>Methods</p> <p>We measured serum leptin, IGF-I, TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) levels in 52 COPD patients with acute exacerbation on admission to hospital (Day 1) and two weeks later (Day 15). 25 healthy age-matched subjects served as controls. COPD patients were also divided into two subgroups (29 with chronic bronchitis and 23 with emphysema). Serum leptin and IGF-I were measured by radioimmunoassay and TNF-α, IL-1β, IL-6 and IL-8 were measured by ELISA.</p> <p>Results</p> <p>Serum leptin levels were significantly higher and serum IGF-I levels significantly lower in COPD patients on Day 1 than in healthy controls (p < 0.001). A positive correlation was observed between leptin and TNF-α on Day 1 (r = 0.620, p < 0.001). Emphysematous patients had significantly lower IGF-I levels compared to those with chronic bronchitis both on Day 1 and Day 15 (p = 0.003 and p < 0.001 respectively).</p> <p>Conclusion</p> <p>Inappropriately increased circulating leptin levels along with decreased IGF-I levels occured during acute exacerbations of COPD. Compared to chronic bronchitis, patients with emphysema had lower circulating IGF-I levels both at the onset of the exacerbation and two weeks later.</p

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel

    Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity – a common inflammatory phenotype?

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is and will remain a major cause of morbidity and mortality worldwide. The severity of airflow obstruction is known to relate to overall health status and mortality. However, even allowing for common aetiological factors, a link has been identified between COPD and other systemic diseases such as cardiovascular disease, diabetes and osteoporosis. COPD is known to be an inflammatory condition and neutrophil elastase has long been considered a significant mediator of the disease. Pro-inflammatory cytokines, in particular TNF-α (Tumour Necrosis Factor alpha), may be the driving force behind the disease process. However, the roles of inflammation and these pro-inflammatory cytokines may extend beyond the lungs and play a part in the systemic effects of the disease and associated co-morbidities. This article describes the mechanisms involved and proposes a common inflammatory TNF-α phenotype that may, in part, account for the associations

    Spinocerebellar Ataxia Type 23: A Genetic Update

    Get PDF
    The spinocerebellar ataxia type 23 locus was identified in 2004 based on linkage analysis in a large, two-generation Dutch family. The age of onset ranged 43–56 years and the phenotype was characterized by a slowly progressive, isolated ataxia. Neuropathological examination revealed neuronal loss in the Purkinje cell layer, dentate nuclei, and inferior olives. Ubiquitin-positive intranuclear inclusions were found in nigral neurons, but were considered to be Marinesco bodies. The disease locus on chromosome 20p13-12.3 was found to span a region of approximately 6 Mb of genomic DNA, containing 97 known or predicted genes. To date, no other families have been described that also map to this SCA locus. Direct sequencing of the coding regions of 21 prioritized candidate genes did not reveal any disease-causing mutation. Apparently, the SCA23 gene is a disease gene with a different function than the genes that have been associated with other known SCA types. Work to elucidate the chromosomal organization of the SCA23 locus will eventually discover the responsible disease gene

    Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Systemic inflammation in chronic obstructive pulmonary disease: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated circulating levels of several inflammatory biomarkers have been described in selected patient populations with COPD, although less is known about their population-based distribution. The aims of this study were to compare the levels of several systemic biomarkers between stable COPD patients and healthy subjects from a population-based sample, and to assess their distribution according to clinical variables.</p> <p>Methods</p> <p>This is a cross-sectional study design of participants in the EPI-SCAN study (40-80 years of age). Subjects with any other condition associated with an inflammatory process were excluded. COPD was defined as a post-bronchodilator FEV<sub>1</sub>/FVC < 0.70. The reference group was made of non-COPD subjects without respiratory symptoms, associated diseases or prescription of medication. Subjects were evaluated with quality-of-life questionnaires, spirometry and 6-minute walk tests. Serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukins (IL-6 and IL-8), alpha1-antitrypsin, fibrinogen, albumin and nitrites/nitrates (NOx) were measured.</p> <p>Results</p> <p>We compared 324 COPD patients and 110 reference subjects. After adjusting for gender, age, BMI and tobacco consumption, COPD patients showed higher levels of CRP (0.477 ± 0.023 vs. 0.376 ± 0.041 log mg/L, p = 0.049), TNF-α (13.12 ± 0.59 vs. 10.47 ± 1.06 pg/mL, p = 0.033), IL-8 (7.56 ± 0.63 vs. 3.57 ± 1.13 pg/ml; p = 0.033) and NOx (1.42 ± 0.01 vs. 1.36 ± 0.02 log nmol/l; p = 0.048) than controls. In COPD patients, serum concentrations of some biomarkers were related to severity and their exercise tolerance was related to serum concentrations of CRP, IL-6, IL-8, fibrinogen and albumin.</p> <p>Conclusions</p> <p>Our results provide population-based evidence that COPD is independently associated with low-grade systemic inflammation, with a different inflammatory pattern than that observed in healthy subjects.</p
    corecore